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Radiative corrections to motion of an electron in external 
electromagnetic fields 
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t Department of Physics, Moscow State University, Moscow 117234, USSR 
$ Department of Physics, Tomsk State University, Tomsk, USSR 
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Abstract. The value of the anomalous magnetic moment of an electron as a function 
depending on the parameters of the external electromagnetic field is obtained. Physical 
analysis of the obtained results is presented. 

1. Introduction 

Theoretical papers devoted to pulsars have suggested recently that magnetic fields of 
the order of the characteristic quantum electrodynamic value H F HO = m 2 c 3 / e h  = 
4.41 x 10” Oe probably exist. Theoretical description of some of the effects observed 
under such conditions and comparison of the obtained results with astrophysical 
investigations make it possible to verify conclusions of the charged particle interaction 
theory in strong electromagnetic fields. This verification is rather interesting because 
the laboratory realisation of such fields is not possible now. 

The well known conclusions of the classical synchrotron radiation theory are 
essentially modified in the case of these strong fields. Really, from the general 
formula of electron energy in a magnetic field 

E = (m2c4 + 2 n e H ~ h ) ” ~ ,  P3 = 0 

it is obvious that in the superstrong magnetic field H > Ho the electron is relativistic 
even on the first excited level n = 1. Energy of the radiated photon in dipole transi- 
tions from the state II = 1 to II = 0, practically coincides with the energy of the 
electron. 

In this case expressions for the total power and probability of the radiation process 
differ from those in classical and quantum ultra-relativistic (H/HoX E l m 2  >> 1) limits, 
which means manifestation of a discrete electron energy spectrum, when the electron 
is in a state with small values of quantum levels n. Furthermore, when H >> Ho the 
probabilities of spontaneous electron transitions from n = 1 to n = 0 with and without 
spin re-orientation become equal in order of magnitude. 

Let us note that, in fields H-Ho,  when the definite conditions are realised, the 
quantum electrodynamic effects connected with electron and photon interactions with 
electromagnetic and electron-positron vacua can be considerably intensified. 

The role of vacuum effects in the constant electromagnetic field was discussed for 
the first time by Schwinger (1948), who gave the theoretical explanation of the 
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anomalous electron magnetic moment. As is known, radiative corrections to electron 
and photon motion manifest themselves through the alteration of electron mass and 
the appearance of photon mass in the external field. These corrections are determined 
by the peculiarities of the particle motion and field intensity. 

This paper is intended to present, as fully as possible, results concerning the 
calculation of the anomalous electron magnetic moment in the external electromag- 
netic field, and in particular, the dependence of the anomalous electron magnetic 
moment on the intensity of the magnetic field H and electron energy E. Therefore, 
the field correction to the electron mass depending on spin will be under considera- 
tion. It is the spin part of the electron mass that is connected with the existence of the 
electron vacuum magnetic moment. It should be noted that various aspects of this 
problem have been considered by many authors. Here our approach follows Ternov 
and Tumanov (1960) and Ternov et a1 (1968a, b). The other form of the electron 
mass operator in the magnetic field, in an a-approximation with respect to the 
radiation field, was used by Schwinger (1973) and Tsai Wu-Yang and Asim Yildiz 
(1973) (see also Bayer et a1 1974). 

2. Radiative corrections to mass of an electron in external magnetic fields 

The electron mass correction in the magnetic field which is conditioned by electron 
interaction with the vacuum can be written as follows: 

Fz(K, 8 )  = (D-IDLI -DlD’r)ko/K ((1 - EK/K’) -- n - n ’  eK/K’)  
Z 

x ( I : ,n , (Z)-12 , - l ,n’ - l  ( z ) ) ,  

z = K sin2 e12 y. 

Here n is a principal quantum number characterising electron energy in the magnetic 
field, 

E,, = chK = ch(k i  + 2yn)’l2,  ko = mc/h, y = eH/cR, 
I,,,,,@) are Laguerre functions; f ;  [‘ = *1 determine the dependence of the quantum 
state on electron spin orientation with respect to the direction of the magnetic field (5 
corresponds to the initial state and 5‘ to the final one). Spin coefficients D I  and D-l 
satisfy the normalised condition 0: +D!,  = 1. 

It is essential to understand that the spin part of the vacuum correction to an 
electron energy may be distinguished only for n # 0. This can be explained by the fact 
that states with n # 0 are doubly degenerate towards magnetic field spin projections 
which split each of these degenerate states. This is why different electron spin pro- 
jections to the field correspond to contributions, which are different in sign, to the 
total vacuum energy. 
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So far as the operation of splitting is relativistically covariant for n f 0, it is 
possible to determine the physical meaning of each term of the sum Am")+ Am(2) in 
the rest system. As a result, the real part of the electron vacuum energy depending on 
spin can be interpreted as an interaction energy of the additional electron magnetic 
moment with the external magnetic field 

ff eh 
/.Lo = -. 2 n  2mc 

Re Am(')= (pH) = -- kolHf(n, a), 

The constant k is defined by 

and can be identified with the anomalous magnetic moment of the electron. The 
function f ( n ,  a )  is determined by the expression obtained by Ternov et a1 (1968a, b): 

(1) 2 x ( I n . n ' ( z ) - I ; - l , n , - l ( z ) ) ,  

where a = ki/2y = H0/2H, 6 = (n'+ a)/(n + a ) ,  z = (n + a)x2 sin2 8. The value 
Re Am(2' has no divergences and hence its renormalisation is not required. 

The case of the ground state (n = 0) is special. The electron spin in this case is 
oriented against the direction of the magnetic field (5=-1) only. Therefore the 
separation of the electron mass into two parts by the same method at n = 0 cannot be 
accomplished now. This state can be characterised by the full correction to the 
electron mass Am(n = 0) = -(a/2n)(eH/2m)f(O, a), 

2 2  where 6' = tnXo = 1 + n' /a ,  z' = z.=~ = ax sin 8. In the state n = 0 the value Im Am = 
0. The values of Am(') for n = 0, and Am in the case n = 0 have divergences that are 
removed by a mass renormalisation. It is easy to see that separation of the value Am 
into two parts for the state n = 0 is not simple, because it is not possible to extract in 
the correct way two finite values from the value being divergent. This circumstance 
was emphasised in Ternov et a1 (1968a, b), where the value Am for the state n = 0 was 
calculated. 

Considering the above, we present the final results for functions f (n ,  a )  and f (0 ,  a )  
in the following regions for parameters n and a (Ternov et a1 1968a, b): 

(i) a >> 1(H << Ho) and small n (n << a);  
(ii) a >> 1, n >> 1; moreover, values n >> a3.0r  n << a 3  are possible; it is the domain 

of ultra-relativistic electron energy; 
(iii) a + 0 (H >> Ho) and values n are small; in this case an electron is relativistic on 

any level n. 
These kinds of separations are interesting from the physical aspect. Moreover, final 
formulae for Am(n = 0) and Re Am(*) in these regions can be represented as elemen- 
tary functions. 
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The first is a quantum case because numbers of n are small. Formulae for f ( n ,  a )  
and f (0 ,  a )  under a >> 1 and a >> n can be obtained in the form of decompositions over 
the parameter l / a  << 1 (Newton 1954, Tsai Wu-Yang and Asim Yildiz 1973, Ternov 
et a1 1968a, b): 

576 :2i- 83), 

13 7 576 lqn220- 83). 
f (o ,  a ) =  1 -- -In a --) -7 (ln a - a 3  i4 16 3a 

The field corrections to electron mass and anomalous magnetic moment in this case 
are very small. 

Let us consider the behaviour of the function Re f (n ,  a )  in the case when electron 
energy is ultra-relativistic ((n/a)’12 >> 1 and a >> 1). With these assumptions (Ritus 
1969, Bayer et a1 1971, Sokolov and Ternov 1974): 

The characteristic feature of this case is the dependence of radiative corrections 
Ref(n, a )  on only one invariant so = $(n/a3)’12 = 3x/2. The corresponding imaginary 
parts of Am”’ and Am‘2’, when ( r ~ / a ~ ) ’ ’ ~  >> 1 are also determined by this parameter 
(Ritus 1969, Bayer et a1 1971, Sokolov and Ternov 1974). The following expressions 
for the two limit values of x can be obtained by integrating (3): 

Thus in the semi-classical region f& << 1)  corrections to Schwinger’s anomalous 
magnetic moment of the electron are again small. 

On the other hand, in the quantum region x >> 1, values of the anomalous magnetic 
moment are changing significantly; when x increases the moment decreases as 
The functional dependence of the value (427r)f on parameter x was found by Ternov 
et a1 (1968a, b). Formulae (3) and (5) were obtained by Ritus (1969) (see also Bayer 
et a1 1971). 

A completely new situation with corrections to mass and the anomalous magnetic 
moment takes place in the case of super-strong magnetic fields (H >>Ho). The ques- 
tion about behaviour of vacuum corrections to mass and anomalous electron magnetic 
moments in such fields was first considered and solved, as far as we know, by Ternov et 
a1 (1968a, b). The main result of that paper, concerning the unusual behaviour of the 
anomalous electron magnetic moment in the fields N >> HO was recently confirmed by 
Bayer and Mil’shtane (1975,1976). 

The asymptotic expressions for functions f (n ,  a )  and f (0 ,  a )  can be represented 
with the double logarithmic precision as a + 0 and Iln (l/a)l>> 1, that is when the 
logarithmic value is much higher than unity. In this case, the basic contribution is 
given by the term in expressions (l), (2) corresponding to the transition on an 
intermediate level n’=O. If a + O  from (l), (2) it follows that f(n, a )  is given by 
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(Ternov et a1 1968a, b, Bayer and Mil’shtane 1975, 1976): 

2a In a 
n f ( 4  a ) = -  

and for f(0, a )  (Ternov et a1 1968a, b, Jancovici 1969, Newton 1971): 

f(o, a )  = -2a In2 a. (7) 

From formula (6) it is easy to see that the anomalous magnetic moment of the electron 
in the super-strong magnetic field differs considerably from the case of the weak field 
(a  >> 1). The function f ( n ,  a ) ,  as a + O ,  is negative and therefore the value of the 
anomalous magnetic moment tends to zero, being permanently negative when a 
decreases (intensity of the field increases). Function f ( n ,  a )  is positive for a >> 1 as well 
as continuous in the whole region of alteration of its argument (if n is fixed). 
Therefore, there are at least two points, at one of which f ( n ,  a )  is equal to zero while 
at the other the function minimum is achieved. It is clear that the minimum value is 
negative and both points are near a - 1 (H - Ho). 

First-order corrections to the electron mass were considered in accordance with 
perturbation theory to constant a = eZ/ch ,  with the obtained results valid at Am << m. 
This condition restricts the corresponding parameters. In the case of the second 
region the formula is valid as long as ax2’3 < 1, a condition made by Ritus (1969). In 
the field H >> HO the restriction takes the form 

1 << In2 (l/a)<< 4 ~ / a .  

In the super-strong magnetic field H >> Ho the vacuum correction to the electron 
energy of the ground state is positive, so the gap between spectra of the single particle 
states in such a field increases compared with the weak field (see also O’Connel 1968). 
Hence in the magnetic field H>Ho,  if the energy of photons equals 2mc2, the 
electron-positron pair production cannot take place, generally speaking. In other 
words, the value 2mcZ is the lower limit of the total energy of two photons in vacuum 
or in the weak magnetic field for the following process y + y + e-+ e+ if vacuum 
corrections are ignored. 

It is of interest that the asymptotic formulae for Am(n = 0) and f ( n ,  a )  in the 
super-strong magnetic field depend on H/Ho as do renormalisation expressions of 
free electron form factors f ( t ) -  1 and g ( t )  at t = (p2-p1)’ >>4m2c4 (p1 and p2 are the 
four-momenta of the electron). Assuming the invariant parameter t is equal to the 
electron kinetic energy in the magnetic field 

- t  = eHch, n=O (8) 

- t  = eHchn, n # O  (9) 

in formulae for f ( t ) -  1 and g ( t ) ,  it is easy to see that these expressions coincide with 
(6)  and (7). In fact, relations calculated with the double logarithmic precision for 
f ( t ) -  1 and g ( t )  in the region - t  >>4m2c4 have the form (Lifshitz and Pitaevsky 1971): 

f ( t ) - l = - - ( - l n 2 1 ~ I + 2 1 n - l n  a 1  t m 7 t , 
2 7 r 2  m c  A lm c I) 

a m2c4 t 
In Iml. g ( t ) =  -- - 

T t  
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Here A is a virtual photon mass. Substituting (8), (9) in (lo), (1 1) for the terms giving 
the main contribution results in the expressions 

f f 2  Am(n = 0) 
3 47T m 

f ( t ) -  1 = --ln a = - 

This fact can be understood if we compare the contribution of a self-energy 
electron mass diagram in the magnetic field of high intensity with the contribution of a 
free electron vertex diagram. 

3. Hydrogen-like atoms in strong magnetic fields 

It is necessary to take into consideration vacuum corrections to energy in super-strong 
magnetic fields when researches on atomic energy spectra, particularly for small 
values of a nucleus of charge z are carried out. 

The problem, in connection with an energy spectra calculation of different atoms 
in a strong magnetic field, was given much consideration (London 1956, Cohen er a1 
1970, Kadomtsev and Kudryavtsev 197 1, Kraynov 1973). In particular, Kadomtsev 
and Kudryavtsev (1971) have investigated the question of the shell structure of heavy 
atoms in the magnetic field. They showed that in strong magnetic fields, the electron 
shells of atoms are compressed in the plane perpendicular to the direction of the 
magnetic field and stretched along the field. So the distribution of the electron density 
in heavy atoms can violate spherical symmetry. 

It is essential that in the case of atoms with small values of z (in particular, for 
z = 1) vacuum corrections to the energy of an atomic electron can considerably change 
the position of the electron ground state. 

Dirac’s equation for the electron in the magnetic field plus Coulomb field has the 
most simple form of solutions in cylindrical coordinates p, 4, z with axis z directed 
along the magnetic field. This form (Sokolov and Ternov 1974) is given by 

where 6 = ( p * + ~ ~ ) ’ / ~ ,  and E = k l  is the sign coefficient. The functions fi are deter- 
mined by equations 

Operators RI and R2 may be written in the form 
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Here also the following relations hold: 

Let us assume that the magnetic field intensity is so high that the radius of the electron 
orbit R = ( ( n  +t)y)l” is much less than Bohr’s radius rB = h2/me2.  In this case the 
motion of the electron on the plane x y  is determined mainly by the influence of the 
magnetic field and hence the solution of equation (12) can be reached in the form 

I f4/  

where L,,s(p) are the Laguerre functions. 
The correction to the ground state energy of the electron in the magnetic field is 

now characterised by the Coulomb nuclear field. The electron motion along the 
direction H in the presence of the Coulomb field changes essentially. In this case the 
electron moves in the finite region and its energy spectrum becomes discrete. For the 
ground state ( n  = 0) functions fl  = f3 = 0, according to properties of the Laguerre 
functions, and f2,4 are determined by the equations 

a 
az 

-i -f2 + (EK + ko-  Q)f4 = 0. 

Writing the electron energy in the form K = ko - t, where E‘<< ko after calculations in 
accordance with the method shown by Landau and Lifshitz (1974) for the energy of 
the ground state, we have 

E = mc2(i - la2 In H / H ~ ~ ~ ) .  (14) 
We have to note that formula (14) is valid with the logarithmic precision. 

field H >> HO is 
The vacuum correction to the energy of the electron ground state in the magnetic 

Comparing the last formula with (14) it can be seen that at H >>Ho the vacuum 
correction to electron energy may be of the same order or greater in comparison with 
the contribution of the electron interaction with a Coulomb field of a nucleus, 
particularly, for z - 1.  It should be noted that the vacuum correction and Coulomb 
energy have opposite signs. 

The exact expression for the ground state energy of a hydrogen-like atom in the 
strong magnetic field was obtained by Kraynov (1973) in the form 

E1 = cos{za In [H/Ho(l - e l )  I), E1=E/mc . 2 1/2 2 

The region of applicability of this relation as shown by Cohen et a1 (1971), is limited 
by inequalities 

H >> Ho and H c 2 ~ H o l c ~ .  ( 1 9  
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The last restriction is connected with taking into consideration the anomalous 
electron magnetic moment interaction with the magnetic field. The value of the 
anomalous magnetic moment in this case was assumed to be equal to the constant 
pocr/27r independently of the field intensity. However, in reality inequality (15) is not 
required as it follows from the analysis given above. 

4. The anomalous magnetic moment of electrons in the presence of the electromag- 
netic plane wave 

The new situation concerning field corrections to an electron mass arises when the 
mass electron operator in the homogeneous constant magnetic field and the elec- 
tromagnetic plane wave field (Rodionov et a1 1976) are studied. This superposition of 
fields is of interest due to the presence of the constant magnetic field. It permits 
consideration of spin effects in the electromagnetic plane wave field combined with 
the effects in the magnetic field. As a result the contribution to the anomalous 
electron magnetic moment due to the action of the electromagnetic plane wave may 
be obtained. In this case the value of the anomalous electron magnetic moment is a 
function of parameters connected with the whole field, in particular, amplitude and 
frequency of the wave (80, w ) ,  intensity of the magnetic field ( H )  and also the electron 
energy. 

Corrections to Schwinger’s value of the anomalous electron magnetic moment in 
such a field configuration are written in the form 

Here invariant values 6 and K are expressed by relations 

In cases K << 1 and K >> 1, for ~ ( 5 ,  K ) ,  the following expressions may be obtained: 

23f f  2 1 
K << 1 = -& - K In -,. 

?r K 

Let us note that corrections to the anomalous magnetic moment due to influence 
of the wave are square to the wave amplitude go. The total correction to the value of 
the anomalous magnetic moment of an electron moving in the superposition of the 
constant magnetic field and the field of the electromagnetic plane wave in the semi- 
classical approximation o( << 1) and at K >> 1 is given by: 

where XI = (80/Ho)(A/mc2). This formula is valid at In ( l /x)>> 1 and In ( 1 / ~ ) > >  1. It 
can be verified experimentally because already it seems possible to measure the 
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correction x: to Schwinger’s anomalous magnetic moment of the electron (a/2n)po 
in experiments with laser beams, whereas measuring of the correction x2 for the 
laboratory constant magnetic fields is not yet possible. 
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